

# 2 Layer Systems in Compression Therapy

An Approach to Deliver Medical Efficacy in Combination with Patient compliance

## **Agenda**



#### 1. General Specification

#### 2. Development

- Observations / Benchmarking / Results
- Compression / Stiffness / Donning

#### 3. JOBST® Ulcer CARE

#### 4. Results in Practice

Case studies / clinical results

#### 5. Outlook / Recommendations

From a developers perspective

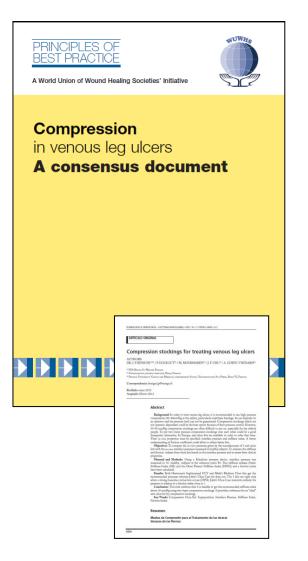
## 1. General Specifications



#### **Jobst Development Specification (2010)**

based on compression consensus\*

2-layer system (with open toe outer stocking)


Total pressure of system (~40mmHg @ B) [30-40 mmHg]\*\*

Split total pressure approximately 1:1 between liner and stocking (tendency liner lower)
[liner <= 15 mmHg]\*\*

SSI superior to 10mmHg/cm

Easy to don

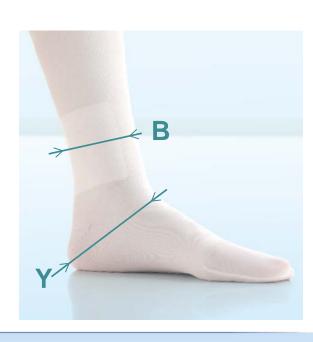
[Friction Index close to 1]\*\*



<sup>\*</sup> World Union of Wound Healing Societies (WUWHS). Principles of best practice: Compression in venous leg ulcers. A consensus document. London: MEP Ltd, 2008

\*\*See also: Compression stockings for treating venous leg ulcers, J. P. Benigni et al, Feb. 2012

#### 2. Development




#### **Main Design targets**

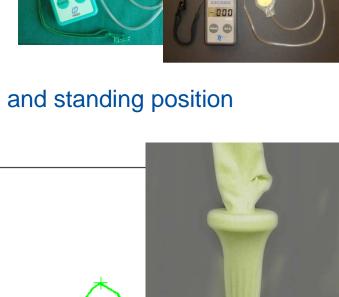
- Medical efficacy according to standards
  - Compression
  - Static stiffness
- Compliance parameters
  - Donning
  - Moisture transport
  - Compatible with normal shoes

#### **Design targets conflict**

- High stiffness
  - → results in a high increase in pressure for any increase in circumference
- Y/B circumference ratio is typically 1.3 1.5
- Example: for B = 25 @ 35mmHg
  - pressure increase at Y of ~22mmHg or more (@ ~+5% mmHg/cm)



#### 2. Development




#### **Methods used for the Analysis**

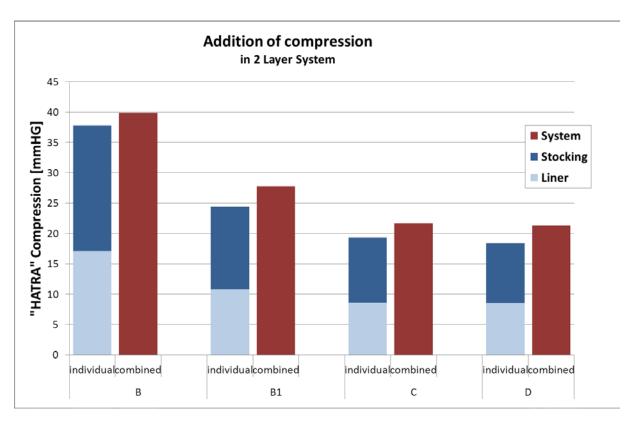
- HATRA
  - To determine compression [mmHg]
- Kikuhime (small probe)
  - To measure interfacial pressure in supine and standing position

LOAD (kgf)

- And calculate Static Stiffness Index\*
- Simple donning force evaluation
  - BSN lab method
  - Simulates the force required to don medical compression stockings
  - Takes size and friction parameters into account



\*According to consensus document, H.Partsch et al. 2006


20 Tensile Extension (cm)

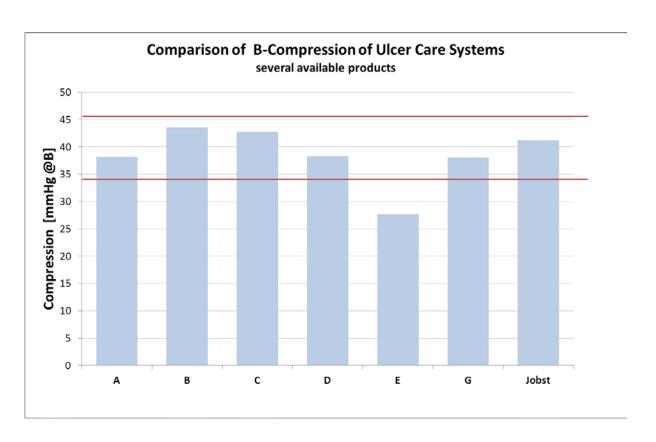
## 2. Development - Observations



#### **Compression (HATRA)**

- Prove: C <sub>liner</sub> + C <sub>stocking</sub> = C <sub>system</sub>
  - Liner + Stocking compressions are additive (slight difference from HATRA intrinsic principle outer stocking is stretched to a larger diameter)




BSN internal data, not final released product testing

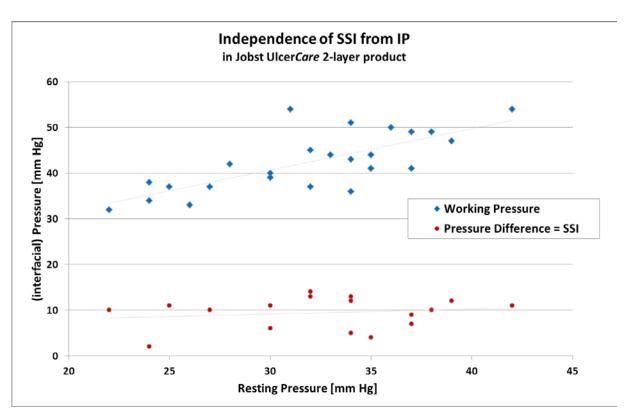
### 2. Development - Benchmarking



#### **Compression (HATRA)**

- Observation on available systems
  - Almost all systems comply with the RAL specification (34-46mmHg)



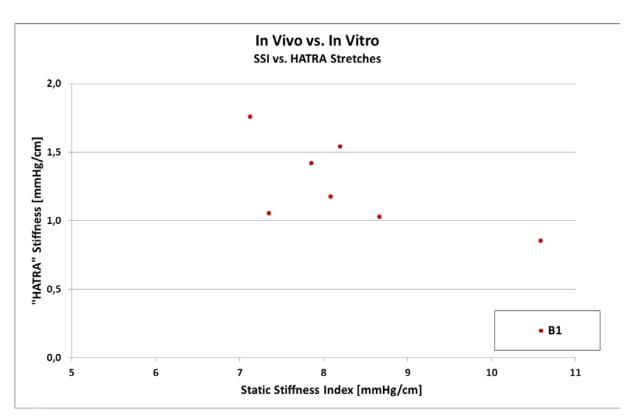

BSN internal data, 2011

## 2. Development - Observations



#### **Independence of Static Stiffness Index**

- Static Stiffness Index vs. resting/working pressure (applied compression)
  - In the developed system, SSI is independent of working pressure ensuring high stiffness throughout the complete size (run). Average is 10.6mmHg/cm

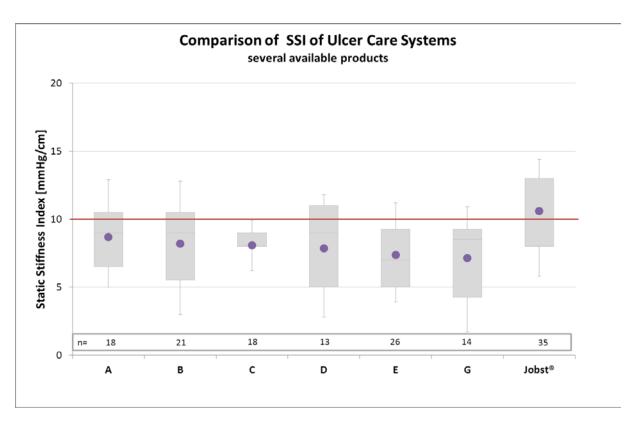



## 2. Development - Observations



#### In Vitro predictability of SSI

- Static Stiffness Index in vivo vs. in vitro
  - No correlation between in vitro (HATRA) and in vivo (Kikuhime) measurements could be established (available systems)

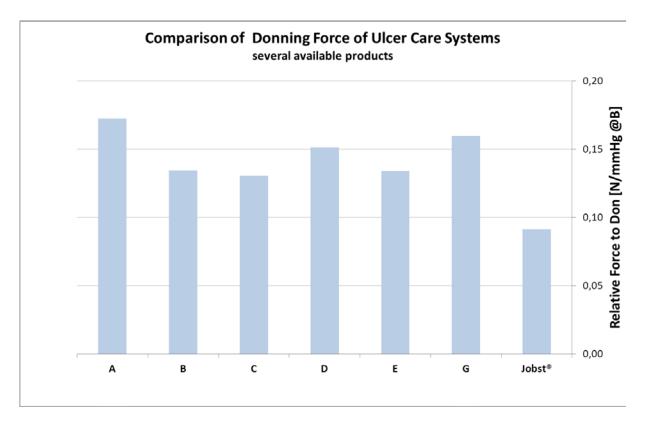



## 2. Development - Benchmarking



#### In vivo determination of SSI

- Multiple measurements of available systems (n=13 to n=35)
  - Most systems fail to meet target of SSI = 10 mmHg/cm
     high variation (30%-60%) on individual systems due to subjects anatomy

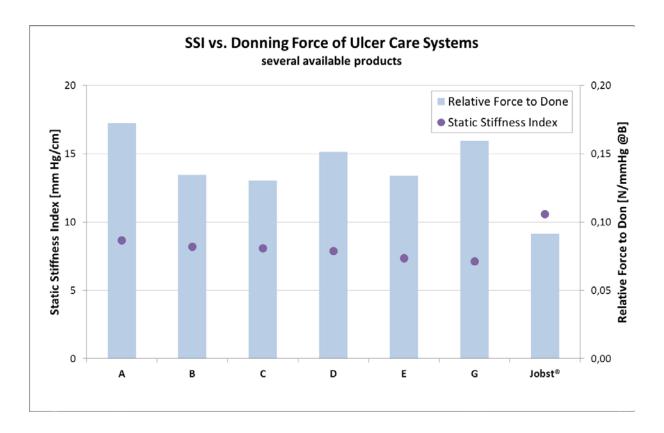



## 2. Development - Results



#### Relative force to don

- Specific knit and stocking construction & material selection
  - Comparison of available systems proves advantage of donning (lab donning assessment, force normalized to compression)




## 2. Development - Results



#### Static Stiffness Index vs. relative force to don

- No correlation is visible (based on BSN lab method)
  - Optimization of both parameters is possible (to a certain extent)



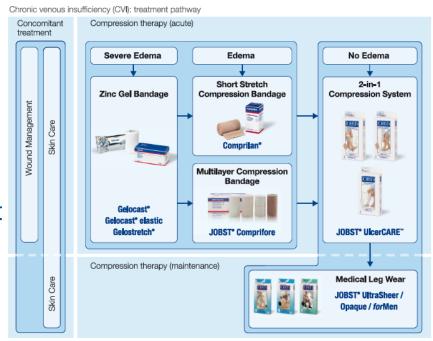
BSN internal data, 2011

## 2. Development - Summary



| Jobst Development Specification (2010) based on compression consensus                 | JOBST® Ulcer CARE            |
|---------------------------------------------------------------------------------------|------------------------------|
| 2-layer system (with open toe outer stocking)                                         |                              |
| Total pressure of system (~40mmHg @ B at rest) [30-40 mmHg]*                          | (and complies with RAL GZ)   |
| Split total pressure approximately 1:1 between liner and stocking [liner <= 15 mmHg]* | (liner ~ 17mmHg)             |
| SSI superior to 10mmHg/cm                                                             |                              |
| Easy to don                                                                           | (lowest force in the market) |
| [Friction Index close to 1]*                                                          | N.A.                         |

\*See also: Compression stockings for treating venous leg ulcers, J. P. Benigni et al, Feb. 2012


#### 3. JOBST® Ulcer CARE



#### Introduction of product concept

- 2-layer system
- Inner liner + outer stocking (w & w/o zipper)
- Part of a therapy approach
- Venous leg ulcer
- No (or mild) edema
- It is important that the stocking fits well → in case of edema, decongestion with bandaging first





#### 4. Results in Practice



#### Individual results from product monitoring

- Product performance is monitored since launch in 2011 (1.5 years)
  - In several case studies, customer questionnaires
- Medical Response
  - Very good healing speed and closure rates
     In combination with adequate bandaging and wound care
  - Has also produced good results in the management of difficult wounds (long history, multiple or large ulcers)
  - Individual cases (with no/mild edema) also show that this product's stiffness (and compression) is beneficial for ulcer closing

#### 4. Results in Practice



### Individual results from product monitoring

#### Medical Response







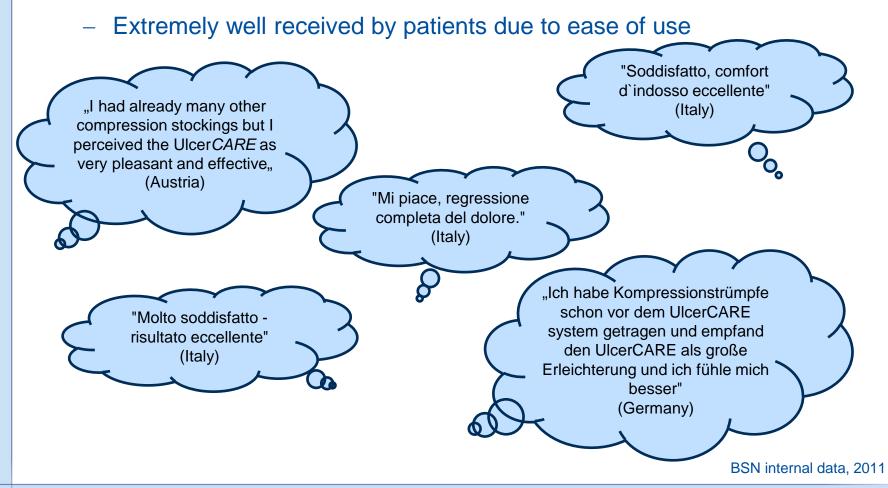






Multiple venous leg ulcers

68 years, male, smoker, ABPI 1, around the leg, since 3 months, slough


BSN internal data, 2011

#### 4. Results in Practice



#### Individual results from product monitoring

Patient Feedback



## 4. Summary



#### Consequently focusing on the main design parameters

- Compression
- Static stiffness
- Donning

## And de-couple the conflicting design targets as much as possible

#### **Enables a product**

- With a good Medical efficacy
- And high patient compliance

#### 5. Outlook / Recommendations



#### What would have made the development even better?

- A generally accepted set of best practice methods to assess stiffness
  - In vivo
     ideally with a low dependency on individual handling
     (and optimally anatomy and tissue composition)
  - In vitro
     with the necessary statistical correlation to the in vivo measurement ideally with a good integration with today's lab methods
  - ➤ (Develop and) standardize practical methods and procedures (suitable for industry use) and facilitate an agreed consensus
- Clear medical evidence for stiffness "categories"
  - Better target definition and trade of balance with compliance
  - Intensify research on efficacy of stiffness "categories" and differentiation (and subsequent treatment recommendations)



## Thank you for your attention