What happens to veins under compression: assessment by plethysmography

Christopher R Lattimer MBBS FRCS FdIT MS PhD

Josef Pflug Vascular Laboratory, Ealing Hospital, Middlesex.
 West London Vascular and Interventional Centre, Middlesex.
 Imperial College, Dept of Surgery & Cancer, London.

Diameter or volume reduction

Reduction of tension & transmural pressure

Compressing veins

- Muscle compression (contraction)
 - Deep veins only
- Elastic compression (MCS)
 - Deep and superficial
- Inelastic compression (Lundatex system)
 - Both, muscle movement within the enclosure
- Pure compression (Hydatic/Mercuric)
 - Both, pressure without tension

1. Elastic compression reduces the working venous volume (wVV) in VV patients

Eur J Vasc Endovasc Surg 2016; 52(1): 105-112

Haemodynamic Performance of Low Strength Below Knee Graduated Elastic Compression Stockings in Health, Venous Disease, and Lymphoedema[☆]

C.R. Lattimer ^{a,b,c,*}, E. Kalodiki ^{a,b}, M. Azzam ^a, G. Geroulakos ^{a,b,c}

^a Josef Pflug Vascular Laboratory, Ealing Hospital, Middlesex, UK
^b Department of Surgery and Cancer, Imperial College, London, UK
^c West London Vascular and Interventional Centre, Northwick Park Hospital, Harrow, UK

2. Compression from muscle reduces the EF in VV patients

 elastic stockings make no significant difference

Phlebology 2018; 33(5): 353-360

Optimizing calf muscle pump function

Christopher R Lattimer^{1,2,3}, Claude Franceschi⁴ and Evi Kalodiki^{1,2,3}

EF: 51.9(48.9-54.3) *vs.* 37.4(26.1-46.8) n=12, *p*=.002 Elastic stockings (Class 1 or 2) had no effect!

3. The tip-toe manoeuvre is suboptimal for muscle compression

Phlebology

The journal of venous disease

Optimizing calf muscle pump function

Christopher R Lattimer^{1,2,3}, Claude Franceschi⁴ and Evi Kalodiki^{1,2,3}

Pumping results n=22

Walking - not hopping!

Tip-toe manoeuvre

STANDING

4. Elasticated compression reduces the venous filling index (reflux) in VV patients

Eur J Vasc Endovasc Surg 2016; 52(1): 105-112

Haemodynamic Performance of Low Strength Below Knee Graduated Elastic Compression Stockings in Health, Venous Disease, and Lymphoedema

C.R. Lattimer ^{a,b,c,*}, E. Kalodiki ^{a,b}, M. Azzam ^a, G. Geroulakos ^{a,b,c}

^a Josef Pflug Vascular Laboratory, Ealing Hospital, Middlesex, UK

^b Department of Surgery and Cancer, Imperial College, London, UK

^cWest London Vascular and Interventional Centre, Northwick Park Hospital, Harrow, UK

5. Elasticated compression increases venous tone & recoil in healthy legs

Quantifying the Degree Graduated Elastic Compression Stockings Enhance Venous Emptying $\stackrel{>}{\sim}$

C.R. Lattimer ^{a,b,*}, E. Kalodiki ^{a,b}, M. Kafeza ^{a,b}, M. Azzam ^{a,b}, G. Geroulakos ^{a,b}

^a Josef Pflug Vascular Laboratory, Ealing Hospital, Southall, UK ^b Imperial College, London, UK

Eur J Vasc Endovasc Surg 2014; 47(1): 75-80

es√s

European Journal of Vascular & Endovascular Surg

6. Hydatic compression reduces venous volume

- pumping is ineffective in water

Alfred Obermayer

The Weightlessness

in People

Principles of Sack Theory

Phlebology 2018; 33(10): 702-725

19th Meeting of the European Venous Forum: Athens, Greece, 28–30 June 2018

EFFECT OF UNDERWATER COMPRESSION ON LEG VENOUS DIAMETERS AND CALF VOLUME

<u>Christopher Lattimer</u>¹, Evi Kalodiki¹, Sara Oberto², Georgio Bergamo³, Alberto Caggiati⁴ and Dimitris Kontothanassis⁵

Underwater Sonography of Leg Veins

Abstracts

Alberto Caggiati ^{a,*}, Christopher Lattimer ^b, Evi Kalodiki ^b, Sara Oberto ^c, Giorgio Bergamo ^d, Dimitrios Kontothanassis ^{e,f}, The Underwater Compression Group

^a Department of Anatomy, Sapienza University, Rome, Italy

^b Josef Pflug Vascular Laboratory, Ealing Hospital and Imperial College & West London Vascular and Interventional Centre, UK

Department of Vascular Surgery, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy

^d Microlab Elettronica, Padua, Italy

^e Istituto Flebologico Italiano, Ferrara, Italy ^fAbanomed, Abano Terme, Padua, Italy

Eur J Vasc Endovasc Surg 2018; 41: 13-15

Underwater laboratory

LAND WATER DIAMETER SGP

Results - venous diameter (u/s)

Results - calf volume (SGP)

Calf volume reduction in water (SGP):

5 (3-6)% p = .002

Evi Kalodiki (1956 - 2018)

