

zafing



# Stiffness & edema

#### **Prof. dr H.A Martino Neumann**

Department of Dermatology, Erasmus MC Rotterdam, The Netherlands



ICC June 8<sup>th</sup> 2018 Rotterdam



#### **Disclosure**

#### **No conflicts of interest**



The shocking truth about alien life on Earth!..... maybe



## Edema

- Many courses
  - Cardiac: decompensation
  - Renal failure
  - Hypoproteinemia
  - Inflammation
  - Infection
  - Dependency
  - Lymphatic
  - etc



## The human factor

The Skin





#### Venous edema as example

#### Venous edema = venous decompensation



**Gravity.** It's not just a good idea. It's the Law.





## From vein to skin







#### **Rotterdam model**



**Cardiovascular Research (2010) 87, 198–210** 

#### **SPOTLIGHT REVIEW**

Microvascular fluid exchange and the revised Starling principle J. Rodney Levick1 and C. Charles Michel 2\*

1Physiology, Basic Medical Sciences, St George's Hospital Medical School, London SW17 0RE, UK; and 2Department of Bioengineering, Imperial College, Exhibition Road, London SW7 2AZ, UK

Received 30 November 2009; revised 4 February 2010; accepted 18 February 2010; online publish-ahead-of-print 3 March 2010

#### **Staverman's osmotic reflection coefficient**







# Starling: yesterday & today

1896 Starling: equilibrium between plasma and interstitium

- 2010 Rodley (Cardiovasc Research):
  - Tissue colloid osmotic pressure to low to refill the capillaries

## **Treatment of edema**

- Treat the course first
- Compression second

Veins and Lymphatics 2017; volume 6:6627

An innovative compression system providing low, sustained resting pressure and high, efficient working pressure

Josefin Damm,<sup>1</sup> Torbjörn Lundh,<sup>2</sup> Hugo Partsch,<sup>3</sup> Giovanni Mosti<sup>4</sup>

# **Compression Therapy**

#### **Pressure exerted by compression:**

- Reduction of the diameter of veins
- Increase in the speed of the venous blood flow
- Improvement of the filtration / reabsorption ratio in the capillaries
- Improved oxygenation of the skin

Reduction of edema

## **Compression and edema**

Ann Vasc Dis. 2012; 5(4): 416–422. Published online 2012 Nov 15. doi: <u>10.3400/avd.ra.12.00068</u>

Compression Therapy: Clinical and Experimental Evidence

- Normally expressed as interface pressure depending on Laplace low
- This pressure is conducted to deeper structures (subcutaneous tissue / muscles / veins, etc)
  depending on Pascal low

### **Three mayor characteristics: 1**

#### **Elasticity:**

- Naturel or synthetic rubber
- Elasticity is the capacity of material / fabric to return to its original dimension and shape after is has been stretched/elongated.

## **Elastic / Non-elastic compression**



*High* working and*high* resting pressure



*High* working but *low* resting pressure



#### Short stretch versus elastic bandage



Maximum and minimum pressures measured underneath a short-stretch (unbroken line) and elastic bandage (dotted line) at the B-area during walking on a treadmill

## **Compression & Pressure**

Working pressure: upright position / walking + gravitation Resting pressure: supine position - gravitation

Ratio of maximum working and (low) resting pressure correlates with improvement in venous refill time (p<0,001)



Häfner HM, Eichner M, Jünger M, Medizinische Kompressionstherapie,Zentralbl Chir 126: 551-6, 2001

**Three mayor characteristics: 2** 

**Elasticity coefficient / stiffness:** 

normal tension at  $B_1 + 1$  cm

Increase in pressure due to the elastic material measured in static condition

**Three mayor characteristics: 3** 

**Hysterisis:** 

# Retardation of the knitted material measured in dynamic condition



## **Hysteresis**

- Greek: lagging / to be detained
- Characteristic of material
- Result of internal friction
- Force-elongation curve





Figure 3: One way hysteresis curves from 3 different stockings. The steepness of the curves (pressure /elongation, corresponding to the tangent of the angle α) characterizes different degrees of stiffness: high (left), medium (middle) and low stiffness (right). (Courtesy of HJ Thomae, Bauerfeind AG)

#### **Relation stiffness and CFR**

#### **Oedema prevention of MECS depends on stiffness**

*Van Geest A et al., Dermatol. Surg.* 26:244-247, 2000

Wolff O, Wentel D, Reeder SWI, Neumann HAM. The effect of compression ulcer stockings on the capillary filtration rate and the formation of edema. Phlebologie 2011; 40:245-250.









#### From static to dynamic



#### The 4<sup>th</sup> Character of CT

Compression most effective during walking Walking changes static into dynamic Interface pressure depending on movements

Dynamic elasticity / stiffness coefficient

## **Dynamic stiffness index (DSI)**

DSI up to tenfold higher than static stiffness index

|                                               | Circumference<br>variation of the<br>MCH in cm | Pressure changes<br>in the air-filled<br>drum in mmHg | Calculated DSI in mm Hg / cm   |
|-----------------------------------------------|------------------------------------------------|-------------------------------------------------------|--------------------------------|
| Exp.#150 MCH                                  | 2.82 % x 25.0 cm<br>= 0.70 cm                  | From 10.8 to 51.2<br>mm Hg, this is<br>40.4 mm Hg     | 40.4 / 0.70 = 58<br>mm Hg / cm |
| Exp.#151 MCH<br>with non-<br>elastic material | 2.75 % x 25.0 cm<br>= 0.69 cm                  | From 1.5 to 57.3<br>mm Hg, this is<br>55.8 mm Hg      | 55.8 / 0.69 = 81<br>mm Hg / cm |

Stolk R et al., Dermatol. Surg 30:729-36, 2004

# **DSI and pressure**



and high DSI; (c) MECS with high compression and low DST; (d) MECS with high compression and high DSI (vd Wegen, et al)

# DSI and pressure in time



## **Dynamic Stiffness**

#### Correlates with static stiffness

(vd Wegen)

#### Correlates with density = hysteresis

(vd Wegen)

## **Edema reduction**

Alternating interface pressure (Laplace)



Shifts Starling equilibrium: reduce edema by microcirculation

## **Stiffness or pressure ?**

- Effectiveness of ambulatory compression is highly determent by dynamic stiffness
  - Massage effect
  - Starling shift
- Non-ambulatory (dependency) is depending on interface pressure only
  - Counter-pressure only
  - And therefor less effective by the same interface pressure as in ambulatory conditions

# The magic triangle



# As stockings are ....



# Conclusions

- 1. The DSI defines the quality of compression expressed as interface pressure: Laplace low
- The composition of the tissue defines the final effect *in* the leg: Pascal low
- 4. Stiffness is the major factor for ambulatory reduction of edema
- 5. Interface pressure is the major factor of edema reduction in dependency

























