

WHAT IMPACTS INTERFACE PRESSURE APPLIED BY ELASTIC COMPRESSION BANDAGES?

<u>F. Chassagne</u>, P. Badel, R. Convert, P. Giraux, J. Molimard

Medical compression bandages

- Venous or lymphatic pathologies
- Stretched fabric applied on the limb
- Interface pressure transmitted through soft tissues to the veins

Better control of interface pressure ⇒ Better controlled treatment

How to predict interface pressure ?

Laplace's Law

Laplace's Law

Pressure was proportional to number of layers

BUT pressure was not directly proportional to bandage tension

[1] Chassagne et al. "Experimental Investigation of Pressure Applied on the Lower Leg by Elastic Compression Bandage." Annals of Biomedical Engineering 43, no. 12 (December 2015): 2967–77. doi:10.1007/s10439-015-1352-1.

Laplace's Law

		\rightarrow	r_c	
Underformed leg geometry $(r_c = radius of$ <i>curvature</i>)	Bandage tension (T)	Application technique $(n = number of layers)$	$P = \frac{n}{r_0}$	<u>Т</u> С

These 3 parameters are not sufficient to explain interface pressure distribution [1]

→ Which parameters impact interface pressure ??

[1] Chassagne et al. "Experimental Investigation of Pressure Applied on the Lower Leg by Elastic Compression Bandage." Annals of Biomedical Engineering 43, no. 12 (December 2015): 2967–77. doi:10.1007/s10439-015-1352-1.

Methods

• <u>Evaluation of the impact of different parameters</u> on interface pressure thanks a numerical model of bandage application

New problem definition (1)

New problem definition (1)

New problem definition (2)

Lowest value	Parameter	Highest value	
0.10	Skin-bandage friction coefficient	0.30	
0.50	Bandage-bandage friction coefficient	0.70	
0.29	Bandage tension [N/mm]	0.68	
2.00	Leg soft tissue mechanical properties c_{10} [kPa]	8.00	

Mean leg geometry

Contribution of the different parameters to pressure variation

Leg soft tissue mechanical properties

Bandage tension

Bandage-bandage friction

Skin-bandage friction

Contribution of the different parameters to pressure variation

Skin – Bandage friction Bandage – Bandage friction Bandage mechanical properties

Leg soft tissue mechanical properties

 \rightarrow Significant impact (p<0.05) on interface pressure

 \rightarrow Relevant description of interface pressure ($R^2 \ge 0.96$)

 $\rightarrow Pressure_{3-layer \ bandage} \approx 1.5 \ * Pressure_{2-layer \ bandage}$ (in agreement with Laplace's Law)

• Include the leg morphology in the problem

• Experimental interface pressure measurements to validate the numerical simulation

• How can the pressure sensor modify interface pressure ?

Thank you for your attention

Any question?