Compression and sports

Jean-Patrick BENIGNI, MD
Paris, France
Compression material
SPORT STOCKINGS USING STIFF MATERIAL INCREASE THE EJECTION FRACTION OF THE CALF PUMP

H. Partsch, G. Mosti

Paris 2014
Behavior of different materials during exercise

- Conventional sport stockings do not increase calf pump function
- Venous narrowing in upright position is too small
- Stiff bands wrapped over the calf: 30-40 mmHg narrow deep veins and expell more blood volume with exercise
- Potential benefits (better performance, less fatigue etc) to be shown in future studies ??
- Stiff support of calf pump improves calf pump not only in CVI but also in healthy individuals
- Roman soldiers, Japanese postmen* used (stiff) leather gaiters for better performance

*Hirai M et al. Phlebology 2013;28:293 F Becker, Chamonix
Compression and sports

- **Rational in sports**
 - **Expected effects**
 - Improved performance and recovery
 - Blood flow acceleration
 - O2 supply to muscles, removing toxins

- **Results of clinical trials**

Compression and sports

- **Performance**
 - Jump after a run on a treadmill
 - *Graduated compression vs no compression*

- Vertical jump height increased
- Less fatigue
- Better comfort
Compression and sports

- **Performance**

- **Sprint**
 - Several studies
 - 60 m, successive sprints, 400 m
 - Sprint time: no improvement

Compression and sports

- **Performance in endurance runners**
 - Only one positive study after a treadmill test
 - 18-20 mmHg below knee compression stockings vs no compression
 - Slight Improvement of performance in men runners (ns)
 - Velocity
 - Time
 - Lactates

Compression and sports

- Performance during an effort of endurance

- Cycling, running, netball
 - No significant improvement of performances
 - No significant improvement of O^2 consumption

Compression and sports

- **Performance in kayakers**
 - Compression garment covering the upper body
 - No effect

Compression and sports

- Biological parameters

 - During sports of endurance
 - No modifications
 - \(\text{VO}^2 \text{ max} \)
 - Blood lactates
 - Partial pressure in O2

Compression and sports

- Cardiovascular and respiratory function
 - A single positive study during exercise of endurance
 - Weak beneficial effect
 - O$_2$ consumption
 - Regional blood flow
 - Marginal benefit for +++ athletes

- Five other studies are negative
Compression and sports

- Thermoregulation
 - 3 studies
 - Increasing of skin temperature
 - No increasing of central temperature

Compression and sports

- Proprioception and muscular oscillations
 - Improvement of proprioception
 - Skin receptors
 - Decrease in muscle oscillation during vertical jumps
 - Questionable during an endurance race?
Compression and sports

And recovery...
Compression and sports

- Positive effects of compression
 - Feeling of fatigue
 - Swelling
 - Muscle pain +++
 - At one condition…
 - The compression has to be brought during exercise!

Compression and sports

- **Effects on post-exercise pain**
 - 24 - 72 hours after exercise
 - Benefit of the compression on the perceived level of pain
- **Many positive studies in different sports**
Compression and sports

- And on the **athletic performances after the recovery**
- **Positive effects** on jump height from 24 to 96 hours after strength exercises
- Wearing compression 12 hours after the first exercise
Compression and sports

- Elimination of muscular metabolites
 - Lactates
 - Lactate kinetics after maximal exercise test
 - Compression 18 mmHg at the ankle and 8 mmHg at the calf during the effort and during the recovery phase
 - After 15 minutes: lower concentration / without stockings

Compression and sports

- Elimination of muscle lactate metabolites
- **BUT ...**
 - If stockings worn during the exercise and remove just after:
 - Increase lactates
 - Lactates would be retained in the muscle
 - *Questionable results ???*

Compression and sports

Muscular biopsy

- 40 min run under compression on one leg vs no compression on the other leg
- *Pressure unknown*
- *Biopsy after 2 days*

- Decreased muscular oscillations
- Less inflammatory muscular lesions
Compression and sports

- And during the training?
 40 runners
 Compression vs placebo for 3 weeks

Training with CS reduced impact of acceleration on muscles (tibial peak acceleration)
CS may play a protective role by reducing impact accelerations during running
Compression and sports

And for a marathon?

- Effect of compression stockings (18-21 mmHg) on muscular adaptation and recovery of the marathoners.

Compression and sports

Material and Methods

Case control study during the "Marathon de Paris".
Compression stockings (18-21 mmHg) vs no compression
2 groups

- CSG Compression Stockings Group
- Case Control Group, CCG.
- Doppler examination before and after the race
- Self questionnaire at the arrival
 Visual Analogic scale from 0 to 100
- Follow up 4 days after the arrival with VAS
Compression and sports

Material

- 86 marathoners
- 43 runners in each group
- 2 groups strictly comparable
 (age, sex, BMI, diameter of the biggest internal gastrocnemius vein, experience of running marathons…)
- No CVD
- Bauerfeind supported this study
Compression and sports

- **Main results**
 - 90% completed the marathon in 4.4 hours, with no real difference between the 2 groups
Compression and sports

- Main results
 - At the arrival

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CCG</th>
<th>CSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle pain</td>
<td>49.3</td>
<td>33.0</td>
</tr>
<tr>
<td>Muscle cramps</td>
<td>16.8</td>
<td>15.3</td>
</tr>
<tr>
<td>Muscle fatigue</td>
<td>56.6</td>
<td>43.6</td>
</tr>
<tr>
<td>Muscle swelling</td>
<td>18.0</td>
<td>8.5</td>
</tr>
</tbody>
</table>

- p value <0.01
- p value <0.05
- p value NS
Compression and sports

- **Duplex**
 - Before the marathon, the diameter of the biggest internal gastroenemius vein was $5.3 \pm 1.5 \text{ mm}$

 - At the arrival, the diameter of the same internal gastroenemius vein was lower in CSG

- CSG : $5.1 \pm 1.4 \text{ mm}$ vs $5.7 \pm 1.5 \text{ mm}$, $p < 0.05$.
Compression and sports

- Recovery
 - Follow up at D4
 - Muscle fatigue
Compression and sports

- Recovery
 - Follow up at D4
- Feeling of swelling
Compression and sports

- What can we conclude on the interest of compression?
Compression and sports

- **Placebo effect ?**

- **Sprint performance : 0**

- **Endurance Performance** : An impact
 - No effect on running times
 - Proprioception and muscle oscillations ++
 - Weak decrease of O^2 consumption +/-
Compression and sports

- **Recovery after endurance performance:** impact ++
 - If the compression is worn during and after exercise
 - Reduction of post-exercise pain
 - Less inflammatory muscular lesions
 - Increased venous flow?
Compression and sports

Discussion

Benefits at the arrival and 2 days after

- How to explain the improvement of symptoms ?
- Translation of better venous return during and after performance ?
- Lower level of toxins around leg deep veins ?
- Less muscular lesions due to the decrease of muscular oscillations ?
Compression and sports

Conclusions

- Wearing CS during endurance test improves recovery
- Necessary to continue wearing CS during the recovery phase in order to maximize the effects (from 1.5 day or 2 days)
- Less oscillations, less muscular lesions, less pain after endurance performance
Compression and sports

Conclusions

- New studies on material, mandatory
- Experimental data on new stockings
 - Stiff stockings (8 mmHg or more)
- Gradient
 - Degressive
 - Progressive +++
 - Constant ++
Compression and sports

Conclusions

- New clinical trials mandatory in amateur sportsmen or sportswomen (half marathon)
- Not with professional
- Lactic acid/toxins in situ
- Muscular Biopsy
- Air plethysmography
- In recovery
Compression and sports

- Any questions?
5th Congress
World Union of Wound Healing Societies

WUWHS 2016
Florence
Italy

One Vision, One Mission